
SGX-USB: Secure USB I/O Path for Secure Enclaves

Yeongjin Jang
Samsung Research America†

blue69420892@gmail.com
† Conducted the work at the Georgia Institute of Technology.

Sejin Keem
Portland State University

sejin@pdx.edu

Abstract

User input plays an essential role in computer
security because it can control system behavior and make
security decisions. Output from the system to users is
also important because it often contains security-critical
information that must be protected in terms of its integrity
and confidentiality, such as passwords and user’s private
data. Despite the importance of user input and output
(I/O), modern computer systems often fail to provide
necessary security guarantees for them, which could
result in serious security breaches. To establish trust in
the user I/O in a commodity computer system, we present
SGX-USB, which combines three essential security
properties: confidentiality, integrity, and authenticity, to
ensure the assurance of user I/O. SGX-USB establishes
a trusted communication channel between the USB
controller and an enclave instance of Intel SGX. The
implemented system supports common user input devices,
such as keyboards and mice, over the trusted channel,
ensuring the integrity of user input.

Keywords: Confidential Computing, Secure Enclaves,
Trusted I/O, and Intel SGX.

1. Introduction

Today’s systems are very complex. Even a simple
desktop computer consists of a huge software stack
including the operating system, device drivers, system
daemons and other applications. Thus protecting
the entire software stack of a system is extremely
difficult. One promising approach to protecting a
system is to reduce the attack surface by isolating the
execution runtime into a separate environment. The
history of building secure operating systems (OS) and
hypervisors [Seshadri et al., 2007, McCune et al., 2010]
have evolved into many software-based
approaches [Klein et al., 2009, Onarlioglu et al., 2013,
Koeberl et al., 2014, Chen et al., 2016] to provide the
trusted execution environment (TEE) in commodity
systems.

Recently, Intel introduced a new hardware

extension, Intel Software Guard Extension
(SGX) [Hoekstra et al., 2013], which provides a
hardware-based TEE, also called as a secure enclave.
While software-based TEEs still require either a
trusted hypervisor or a trusted operating system,
this hardware TEE implementation offers a strong
security guarantee of not trusting privileged software
including operating systems and hypervisors, by
isolating memory and registers at the hardware
level [Costan and Devadas, 2016, Rozas, 2013].

Although Intel SGX is now available in the most
of newly manufactured commodity x86 processors, this
hardware TEE is still limited to server or daemon
applications because Intel SGX cannot support trusted
user input/output (I/O) to its enclave that is running in
ring 3, due to the requirement that I/O handling must be
done in ring 0. In order to get benefits from Intel SGX,
we design SGX-USB, which can establish a secure I/O
path between a USB device and an enclave. In particular,
SGX-USB opens a secure channel that can support USB
protocol, which enables support for a variety of user I/O
devices including a keyboard, mouse, camera, speaker,
and display, and even for non-user-facing devices such
as a disk.

To enable a secure channel, SGX-USB places a
proxy device that sits in the middle of the channel and
establishes a secure communication channel between
an I/O device and the enclave. The channel is
designed to guarantee the authenticity of two end points,
the application in the secure enclave and the proxy
device. On top of that, the channel also guarantees the
confidentiality and the integrity of the data that are passed
through the channel.

Establishing a secure communication channel starts
with a remote attestation process that authenticates
the enclave and the proxy device, and shares a secret
between these two at the same time. After authenticating
end-points and sharing a secret between them, the proxy
device opens a communication channel between a USB
I/O device and an enclave. The proxy device protects
the data transmitted in the channel by using a derived
encryption key from the shared secret. Through the
remote attestation process and application of encryption

Proceedings of the 57th Hawaii International Conference on System Sciences | 2024

Page 7437
URI: https://hdl.handle.net/10125/107279
978-0-9981331-7-1
(CC BY-NC-ND 4.0)

over the channel, SGX-USB can guarantee the three key
security properties: authenticity by remote attestation,
and confidentiality and integrity by encryption. Thereby,
SGX-USB provides the assurance of user input and
allows the enclave instance to handle commands and
data from the user securely.

While current applications of Intel SGX primarily
ensure secure network and file I/O, this new design
enables secure user I/O in the TEE so that Intel SGX
can facilitate user-facing trusted applications, such
as an authentication manager that securely processes
passwords. Moreover, we show that constructing
an end-to-end trusted I/O channel from one user to
another over the Internet is possible with SGX-USB;
for example, having a video chat over the Internet.
SGX-USB can forward not only the user I/O devices
but also general USB I/O devices through the established
secure channel. Its overhead on the bandwidth is around
1%, and added latency is around 11 microseconds, all of
which are negligible.

To summarize, we made the following contributions
in this paper:
• We design SGX-USB, which enables the trusted user

I/O to an enclave of Intel SGX by establishing a trusted
I/O channel between a USB device and an enclave.
The design of SGX-USB ensures the authenticity of
channel end points and the confidentiality and the
integrity of the data that flows through the established
secure channel.

• We extended the Intel SGX remote attestation process
to enable authentication and secret sharing between a
remote device and an enclave.

• We implemented a prototype of SGX-USB with
commodity hardware, a small board computer and
a desktop computer to demonstrate SGX-USB’s
feasibility in securely delivering keyboard input to
an enclave. Moreover, we present a potential
interesting use case of SGX-USB for video chat,
which establishes a user-to-user trusted I/O channel
over the Internet.

2. Background and Related Work

Intel SGX. Intel Software Guard Extensions
(SGX) [Hoekstra et al., 2013, Intel Corporation, 2013,
Intel Corporation, 2014, Rozas, 2013] is an extension of
the x86 instruction set architecture (ISA). It offers a
trusted execution environment (TEE), known as enclaves,
operating at the user-level.
SGX Threat Model. The trusted computing base (TCB)
of SGX encompasses only the processor hardware and
the program running within an enclave. To preserve
the TCB without relying on an operating system, SGX
grants an enclave isolated memory space and independent
execution runtime [Costan and Devadas, 2016]. SGX
architecturally prevents any access to the enclave’s
memory and registers from any other execution domain.
This strict isolation even applies to the operating system
kernel. Moreover, SGX encrypts all data within

an enclave to assure its confidentiality and integrity,
safeguarding against physical attacks like cold-boot and
bus snooping. Given this combination of isolation
and encryption, an enclave can remain impervious to
potential threats from operating systems, kernel device
drivers, and other processes.
Remote attestation. Beyond isolation and encryption,
SGX offers protocols for both local and remote
attestations, ensuring the integrity of an enclave
instance’s code and its loading parameters. An enclave
can produce a status report, detailing the measurements
(e.g., hash) of its loaded code and security specifics.

Local attestation facilitates the validation of one
enclave by another on the same hardware platform.
The target enclave’s report is signed using a hardware
key, which another enclave can verify. For remote
attestation, a remote verifier assesses the status of an
enclave. Intel supports this with the Quoting Enclave and
Intel Attestation Service (IAS). The Quoting Enclave can
produce a quote, a signed version of an enclave’s report,
similar to local attestation. This quote is endorsed with an
Intel-issued hardware key. The IAS then offers APIs to
validate a quote. Hence, after receiving a quote, a remote
verifier submits it to IAS to ascertain its legitimacy.
I/O handling in SGX. Given that SGX’s design situates
the enclave in user-space (i.e., ring 3), it cannot directly
process I/O requests, which generally demand kernel (i.e.,
ring 0) privileges [Costan and Devadas, 2016]. Instead,
an external application works in tandem with the
operating system to manage I/O requests for the enclave,
mirroring how typical processes interact with the OS.

As the actual I/O management is left to the
untrusted OS without inherent protection, the enclave
must independently secure its I/O channels. This
is vital to maintain the confidentiality and integrity
of data in transit. Hence, Intel suggests leveraging
the remote attestation protocol, combined with the
Diffie-Hellman key exchange [Johnson et al., 2016,
Brickell and Li, 2007, Anati et al., 2013], to craft a
secure communication link between an enclave instance
and a distant host. To permanently store data produced
by an enclave on a disk, Intel recommends the sealing
feature [Anati et al., 2013], which ensures authenticated
encryption using a hardware key. Furthermore, many
research initiatives that depend on Intel SGX for data
protection have adopted the Transportation Layer
Security (TLS) to provide authenticated encryption for
network communication channels [Baumann et al., 2014,
Kim et al., 2015, Shih et al., 2016, Hunt et al., 2016,
Arnautov et al., 2016, Schuster et al., 2015].
User I/O in SGX. Unlike network connections that
allow the negotiation of security parameters across their
channels, user I/O devices like keyboards and mice are
constrained. Termed “dumb I/O devices”, they lack the
capability to negotiate encryption schemes to establish
secure communication with an enclave. This limitation
is not exclusive to user I/O devices. Other general I/O
devices face similar challenges. For instance, graphic

Page 7438

display devices, such as GPUs, rely on direct memory
access (DMA) for data processing. However, they can’t
securely interact with an enclave due to the absence of
protocols designed for safe communication.

Intel does offer a solution for audio and video
outputs with its protected audio and video path
(PAVP) [Intel, 2008]. This is integrated into the chipset
and ensures data transmitted over bus channels is
encrypted. Yet, this solution has its own limitations.
The protocol behind PAVP is proprietary, making it
compatible only with Intel HD Graphics devices—an
integrated GPU tailored for the processor. As a result,
standard I/O devices are left without the means to utilize
this protocol.

3. Overview

SGX-USB is designed to establish a trusted
communication channel, enabling user I/O devices to
connect seamlessly with an Intel SGX enclave instance.
Notably, SGX-USB pioneers a secure channel tailored
for USB devices. Given the versatility of USB, this
encompasses a range of user I/O devices, from keyboards,
mice, and cameras to speakers and displays. It even
extends to non-user-facing devices like disks. A
challenge arises since standard USB devices aren’t
inherently equipped to negotiate or implement security
parameters on their I/O channels.

SGX-USB introduces an intermediary—a proxy
device positioned within the channel. This device’s
role is to facilitate secure communication between the
I/O device and the enclave. This secure dialogue is
initiated via a remote attestation process, which not
only authenticates the enclave and proxy device but
simultaneously shares a confidential secret between them.
Post authentication and secret-sharing, the proxy device
activates a communication channel linking the USB I/O
device with the enclave. Data transmission within this
channel is safeguarded using an encryption key derived
from the shared secret.

The salient feature of this remote attestation process
is the assurance it offers concerning the genuineness
of both channel endpoints. Coupled with authenticated
encryption, it guarantees the secure conveyance of I/O
requests to and from the intended USB device. In essence,
the channel is so fortified that no system component
outside the enclave can access the I/O data.

3.1. Security Guarantees

SGX-USB offers the following assurances for the
secure communication channel it establishes between an
enclave and the USB Proxy USB Proxy Device:
• Authenticity: The security protocol of SGX-USB

allows channel establishment only upon verification of
its endpoints—the enclave and the USB Proxy Device.
Channel I/O requests are encrypted with a unique key,
exclusively shared between the authenticated entities.

• Confidentiality: All I/O requests on the channel are
encrypted using a key, securely derived from a shared
secret. The robustness of the remote attestation process
ensures that only the two communication channel
endpoints are privy to this encryption key. This
effectively bars any potential attackers from accessing
the raw data of I/O requests.

• Integrity: SGX-USB also ensures the integrity of
data. By employing an authenticated encryption model
that is resilient against data tampering, replay, and
reordering attacks, the system effectively thwarts any
malicious data injections.

3.2. Assumptions and Threat Model

In conceptualizing SGX-USB for a fortified I/O
channel linking a USB device to an SGX enclave, we
operate under several assumptions:
• We assume the computer’s operating system that hosts

enclaves as untrustworthy. This assumption extends to
potential compromise scenarios, including non-enclave
OS applications, system libraries, drivers, and the
kernel.

• Our trust is exclusively placed on the Intel SGX
hardware component (the processor) and Intel’s remote
attestation service (IAS). Such trust enables the
verification of program integrity within enclaves and
facilitates secret key sharing between the enclave and
the USB Proxy Device.

• we trust the private key of the remote attestation
service provider that signs the public key of the
USB Proxy Device. In this regard, an enclave can
verify the validity of the UPD by checking if the public
key of the UPD that signs its ECDHE parameter is
issued by the Remote Attestation Service Provider
(RASP), by verifying its signature.

• Complete faith is vested in the software stack
constituting the USB Proxy Device (UPD),
which includes the UPD’s OS kernel, the usbip
driver [Márton, 2011], system libraries, and the proxy
application operating on the device.

• Our model assumes that attackers lack physical access
to any components of SGX-USB. Furthermore, the
hardware integral to the SGX-USB framework is
assumed trustworthy. This implies that attackers cannot
directly interface with USB devices (like keyboards)
or implant any hardware backdoors.

4. Design of SGX-USB

4.1. Architecture

To provide the required security properties to
the channel that is established to an enclave, the
SGX-USB system consists of following components:
an enclave program, the Remote Attestation Service
Provider (RASP), and the USB Proxy Device (UPD).
Figure 1 illustrates how the SGX-USB components are
connected.

Page 7439

Remote	Attestation	ServiceApp
Enclave

Remote	Attestation
Service	Provider	

Intel
Attestation
Service

USB	Proxy	Device

OS

Ethernet	
Adapter

Protected by TLS
Protected by SGX-USB

SGX-USB	Device	Components

Trusted component
Untrusted component

Device
Driver

Secure
App

Figure 1: A diagram that illustrates the architecture of
SGX-USB. An application that handles I/O runs in the enclave.
The enclave will authenticate with the remote attestation service
provider (RASP) through the Intel SGX remote attestation
process. Intel Attestation Service (IAS) will provide the
verification of a quote generated for an enclave, to verify the
authenticity of an enclave. The USB Proxy Device (UPD) will
receive the signed quote then verifies the signatures of the quote,
and then establishes a secure communication channel with the
enclave and forward USB I/O devices.

Enclave Program. In SGX-USB, the program that will
process I/O must be run in an SGX enclave. This program
can be any application that utilizes the secure I/O channel.
For example, on utilizing a secure I/O channel as a secure
method of processing password, a program that handles
the authentication process with user’s password will be
running in the enclave.

Because an enclave of SGX cannot directly
handle I/O requests, the enclave communicates
through the untrusted part of the program (i.e.
ocall) that handles (untrusted) I/O requests such as
networking and exchanging unencrypted traffics with
the USB Proxy Device. Over the untrusted channel, an
enclave and the USB Proxy Device wrap the channel
with an encryption layer to provide security guarantees
on the confidentiality and the integrity of the data that
they stream through the channel.

To share an encryption key and to verify the
authenticity of the channel end point, SGX-USB
utilizes the remote attestation process provided by
Intel (through Intel IAS) to prove its authenticity and
integrity of the program in the enclave and verifying
the USB Proxy Device. This process is handled by the
remote attestation service provider (RASP).
Remote Attestation Service Provider (RASP). The
RASP handles the verification of the authenticity and
integrity of an enclave program through the remote
attestation protocol of Intel SGX. The RASP is a server
program that resides on the network (i.e., on the Internet)
and verifies whether or not the current enclave program
is intact. By communicating with the Intel Attestation
Service (IAS) and the enclave, the RASP receives a quote
that is generated by the enclave, which indicates the
launching status of the enclave, and sends the quote to the
IAS to get a signed quote. Subsequently, the RASP signs
the quote by its private key to make sure the authenticity
of the ECDHE security parameter in the quote, which
will be used for establishing a secure communication
channel between the USB Proxy Device and the enclave.

1. SP initiates the remote attestation

2. Enclave sends msg0, msg1, and g_a

3. SP sends msg2, sigRL, and g_b

4. Enclave sends msg3 (Quote)

req SigRL
get SigRL

req Sign Quote

get Signed Quote5. SP sends signed quote and
 verifiers (encrypted with g_a_b)

RA END

Service
Provider

Intel
IAS Server

Client
Enclave

Figure 2: The remote attestation process of Intel SGX.

Intel Attestation Service (IAS). Intel Attestation
Service is a part of the remote attestation infrastructure
of Intel SGX. The job of the IAS is to verify a quote
generated by the Quoting Enclave, which is a signed data
of a measurement report of an enclave. Because all the
quotes of enclaves are protected by a secret key that is
fused in the processor and only Intel knows, only the
IAS can verify the legitimacy of the quote. The RASP
verifies the quote received from an enclave using the IAS
to ensure the authenticity of the enclave.
USB Proxy Device (UPD). The USB Proxy Device is
a proxy that forwards packets from USB I/O devices to
an enclave through secure communication channels. The
UPD sits between USB I/O devices and the enclave, and
it acts as a middle man that creates secure I/O channel
and forwards the I/O requests. To establish the secure
channel, the UPD first shares a secret with the enclave
program by following the remote attestation process.
After sharing a secret, the UPD derives an encryption
key and apply an encryption layer to the channel between
an enclave and itself to make the channel secure. After
establishing a secure communication channel protected
by encryption, the UPD forwards USB packets from the
target USB device to an enclave, and from an enclave to
the target device, vice versa.

4.2. Verifying Authenticity and Sharing Secret
through Remote Attestation

Before establishing a secure communication channel
between the UPD and an enclave, both components
authenticate each other to check if the each end point
of the channel is intact. Because the regular remote
attestation protocol provided by Intel only allows us
to verify an enclave from the RASP, we extended the
protocol to let the UPD verify an enclave and sharing a
secret between them.
Intel SGX Remote Attestation. Intel SGX provides
a way of attesting the launching status of an enclave
through the remote attestation protocol. Figure 2
illustrates how this process works. In the following, we
describe each step of the protocol.

Page 7440

1. The service provider (the RASP), which is a remote
party that requests the verification of an enclave,
initiates the remote attestation process.

2. The enclave that is being attested gets the request
then send msg0, which contains group ID of an
enclave and msg1, which contains the public key (i.e.,
g_a) parameter of the Elliptic Curve Diffie–Hellman
Ephemeral (ECDHE) protocol that will be used for
sharing a secret with the service provider at the end
of the remote attestation process.

3. Next, on receiving both msg0 and msg1, the service
provider verifies the group ID (must be 0) in the msg0.
If the group ID is zero, then the service provider
requests a revocation list (i.e., SigRL) from the Intel
IAS. This SigRL is signed by Intel IAS and will be
used by the enclave for verifying the validity of the
service provider. After processing the messages, the
service provider generates msg2, which contains its
public key parameter for the ECDHE key exchange
(i.e., g_b).

4. After receiving msg2, the enclave generates a report
and gets a quote for the report by the Quoting
Enclave (QE). A report of an enclave includes the
measurements (i.e., hash) of the launching status of an
enclave that only Intel Attestation Service can verify
as well as both of public key parameters (g_a and g_b)
for the ECHDE key exchange. The Quoting Enclave,
an enclave that is developed by Intel, will sign the
report, and the enclave sends this quote to the service
provider as msg3.

5. Subsequently, the service provider receives msg3 and
send it to the IAS to verify whether the quote is
valid or not. Only for the valid quote, the IAS will
return a signed quote with a signature generated by
Intel’s private key. The service provider verifies this
signature; if it is valid, the service provider generates
a shared secret and then send the signed quote to the
enclave as msg4, by encrypting the signed quote with
the secret key.

6. The enclave also calculates a shared secret and derives
an encryption key; then it decrypts the quote from
msg4 using the key and verifies the signature of the
quote. In consequence, the enclave can ensure that
it has shared a secret with a service provider that is
certified by Intel (because they cannot get the correct
signature from IAS unless Intel does not certify them),
and the service provider can ensure that it has shared
a secret with a legitimate enclave instance (because
IAS will not sign the quote if an enclave instance is
not legitimate). Note that both the enclave and the
RASP have shared a secret (i.e., g_a_b) through the
ECHDE protocol.

SGX-USB Remote Attestation. To share a secret
between the UPD and an enclave, we extended the remote

1. User initiates SGX-USB

2. Enclave sends msg0, msg1, and g_a

3. SP sends msg2, sigRL, and g_b

4. Enclave sends msg3 (Quote)

req SigRL
get SigRL

req Sign Quote

get Signed Quote5. SP sends signed quote and
 verifiers (encrypted with g_a_b)

6. Enclave sends signed quote (g_a)
Signed Quote (g_a)

7. Send g_c and
 verifier (g_a_c)

8. Enclave sends verifier
 (encrypted with g_a_c)

RA END

Service
Provider

Intel
IAS Server

Client
Enclave

USB Forward
Device

Figure 3: An extended remote attestation process for
SGX-USB. Steps from 1 to 5 remain the same as the regular
remote attestation of an enclave. Procedures marked with the
bold face (Steps 6, 7, and 8) indicate additional procedures for
attesting an enclave from the USB Forwarding Device.

attestation process of Intel SGX. Figure 3 shows the
process of the remote attestation with our extension. We
describe the extended part of the process in the following.
• For the step 1, we changed the process to be user

initiated instead of the service provider.
• After the step 5, the enclave sends the signed quote

(decrypted from msg4) to the UPD.
• On receiving the signed quote, the UPD verifies if the

quote is correctly signed by the Intel’s private key and
the private key of the RASP. Only if both signatures
are verified, the UPD generates an ECDHE parameter
and send the public part (i.e., g_c) to the enclave as
msg5, along with the signature of this public parameter
and the public key that can verify the signature. Note
that the UPD presents a public key as a certificate that
contains its signature, signed by the RASP.

• On receiving msg5 from the UPD, the enclave verifies
the signature of the ECDHE parameter (i.e., g_c) using
the public key of the RASP, to check if the RASP has
certified the signing key. As a result of the process, the
UPD has verified that both the IAS and the RASP have
signed the quote (so it is valid), and the enclave has
verified that the signature of the public key parameter
(i.e., g_c) is generated by a public key that is certified
by the RASP (so the UPD is certified one). Only if all
signatures are verified, both the enclave and the UPD
calculates a shared secret (i.e., g_a_c) and derives an
encryption key that will be used for securing the I/O
channel.

4.3. User Verification

User Verification. Although the public key
infrastructure and cryptographic operations can
guarantee the authenticity, the confidentiality, and the
integrity of communication channel, the establishment of
the channel must go through the user verification process
to ensure that the use of the channel follows the user’s
intent.

To this end, the UPD explicitly display the identity
of an enclave (e.g., application name), the device that the

Page 7441

Figure 4: The user interface for verifying an enclave and
its usage, presented in the USB Proxy Device. Figure
on the left shows how the UPD displays the request for
establishing a secure channel to a keyboard from an enclave.
The information displayed on the LCD screen indicates the
name of an enclave (i.e., AuthMgr), the name of the requested
device (i.e., Keyboard), and application specific information
for indicating the usage of the input (i.e., paypal.com). After
clicking the SELECT button (i.e., the user approves), the screen
will show the ’OK’ sign at the end of the second line to indicate
that the secure channel is established.

Key ID
(4 bytes)

Shared Secret
(32 bytes)

Alg ID
(4 bytes)

“SGXRAENCLAVE\0”
(13 bytes)

“SGXRASERVER\0”
(12 bytes)

M :=

KEY := SHA256 (M)
SMK := KEY[0..16]
SK := KEY[16..32]

Figure 5: The data format for deriving secret key from a shared
secret. The key derivation function uses the SHA-256 message
digest algorithm to derive a 16 bytes secret key from a shared
secret.

enclave connects to (e.g., keyboard), and the usage of the
device (e.g., that domain name that the keystrokes will
be submitted).

Figure 4 shows an example of the user verification
process of SGX-USB on using the system as a password
authentication manager. On the screen, the first line
displays the application name as AuthMgr and the device
name as KBD to indicate that the AuthMgr enclave would
like to talk to the keyboard device. In the second line,
the UPD will display how the user input will be used for,
in other words, displays the domain name paypal.com
to indicate that the password typed by the user will be
submitted to the paypal.com.

To authorize the access, the user can click ’OK’
button on the device (indicated as Select in Figure 4).
The channel will be established only if there is a
user approval; otherwise, the UPD will not make the
connection to the device.

4.4. Integrity and Confidentiality: Encrypted
Communication Channel

To protect the communication channel between an
enclave and the UPD, SGX-USB wraps the channel
with an encryption layer protected by the key that is
exchanged during the remote attestation process. In
short, SGX-USB applies the AES-128-GCM scheme,
which is an authenticated encryption with associated data
(AEAD) that can protect both data confidentiality and
data integrity.
Key derivation. After finishing the remote attestation
process, both an enclave and the UPD have shared a
256-bit secret through ECDHE protocol using the NIST

Authentication Tag (16 bytes) Payload Size (8 bytes)

Encrypted Payload (<264 bytes)

Excluded from AES-GCM data authentication

Figure 6: The header format for delivering encrypted payload
on trusted I/O channel in SGX-USB. Authentication Tag will
be used for verifying the integrity of both the size field and
encrypted payload. While the AES-128-GCM encryption
applied only to the payload, the size field is supplied as
additional data for AES-128-GCM data authentication; thus
the encryption scheme protects the integrity of both encrypted
payload and the size field.

P-256 curve. To derive a 128 bit key for an AES
encryption, SGX-USB followed the same way on how
Intel derives a secret key in their SDK example; the
scheme uses the SHA-256 message digest algorithm.
Figure 5 illustrates how the key derivation function works.
By hashing the Key ID (0 in this case), the 32 bytes
shared secret, the Algorithm ID (0 in this case), and
two string literals SGXRAENCLAVE and SGXRASERVER, the
derivation function generates a 32 bytes message digest
and uses the latter 16 bytes (SK in Figure 5 for the
encryption key.
Encryption Scheme. SGX-USB uses AES-128-GCM
for the encryption scheme for the secure channel. Since
the GCM (Galois Counter Mode) is an authenticated
encryption with associated data (AEAD) encryption
scheme, we can use one key for protecting both
the confidentiality and the integrity of the data. To
encapsulate a plaintext USB packet into an encrypted
packet, we attach a 24 bytes header on the payload
followed by the encrypted packet payload. Figure 6
shows how the header of a packet in the channel
composed.

To send a plaintext USB packet over the secure
channel, we first identify the size of the packet. To
protect the integrity of both encrypted text and the
size field, we encrypt the packet payload using the
AES-128-GCM encryption scheme. At the same time
when the encryption is being processed, we put the size
(8 bytes) field as the additional data to be authenticated.
In this way, the scheme allows us to detect any forgery on
both encrypted data and the size field. As a result of an
encryption routine, the scheme will generate a 16 bytes
authentication tag that will be verified when decrypting
the data to check if the data is intact. We put this tag at
the top of the header to deliver the tag to the other end
point.

We process the decryption in a reverse way. After
receiving the header data, we initialize a decryption
engine with the secret key, the authentication tag in the
header, and the size field in the header as the additional
data to authenticate. The encryption scheme will return
true only if when the secret key and the authentication
tag is matched.

Another point that is essential on applying the

Page 7442

AES-128-GCM encryption scheme is the setting of
initialization vector (IV). To securely use the encryption
scheme, one must not reuse the IV for one secret key. To
follow such a secure scheme, we set a 12 byte (96bit)
integer counter value starting with zero value for each of
sending and receiving side, and increment IV counter per
each en(de)cryption operation. In this regard, the IV will
not be reused if the channel sends less than 296 packets,
which is a practically unreachable number. Additionally,
because the IV counter is monotonically increasing on
each sending and receiving side, the scheme is resistant
to the replay and the reordering attack.

5. Implementation

We implemented our prototype of SGX-USB using
a desktop machine that supports Intel SGX (a quad-core
Intel Core i7 6700K@4.0Ghz) and Raspberry Pi 3 model
B device, which is a small board computer, and securely
forwarded a keyboard device to an enclave.

6. Evaluations

We evaluate SGX-USB by answering the following
questions:
• How secure is the I/O communication channel

established by SGX-USB? (§6.1)
• How much overhead does SGX-USB incur on

delivering I/O packets in terms of throughput and
latency? (§6.2)

• How long does it take to establish the secure I/O
channel through the remote attestation process? (§6.2)

6.1. Security

Attacks against enclave instances. The first avenue
for an attack is to thwart the protection provided by an
SGX enclave instance. Because Intel SGX isolates all
memory access from the entire domain controlled by
attackers including operating system, attackers cannot
obtain nor alter the runtime data in the enclave’s memory.
Additionally, attackers cannot change the behavior of an
enclave instance because the remote attestation process
ensures that the integrity of the code in the enclave. One
possible way would be launching a malicious enclave
instance and establishing secure I/O channel using this
enclave. However, because the remote attestation process
of SGX-USB not only includes the IAS but also utilizes
the RASP, the RASP will not generate a signed quote
if the enclave instance (and its measurement) is not
pre-registered to the service. By only using the set of
pre-registered enclave applications, an attacker could
launch a disguising attack that invokes a different enclave
instance with the enclave what user wants to use. In such
a case, at the final verification stage of SGX-USB, the
user will notice that the name of the malicious enclave
instance is not the enclave that user has his/her intention,
so request for establishing secure I/O channel will be
rejected.

Attacks on the remote attestation procedure.
Attackers could try to forge an acceptable message
during SGX-USB’s remote attestation process. First,
an attacker could attempt to generate a fake quote;
for example, the attacker could present a valid quote
message with a legitimate measurement for a registered
enclave while executing a malicious enclave instance.
Nonetheless, this is strictly protected by the Intel SGX
hardware and the IAS. All the measurement reports must
be generated by the secret key fused into the processor
hardware, and the quote can only be verified by the
Quoting Enclave, which is created by Intel. Thus, the
attacker cannot either generate valid quote with forged
message or pass the verification process of the IAS.

Finally, an attacker could attempt to build a fake
USB Proxy Device to inject arbitrary I/O message
to an enclave instance. Although we set our threat
model to exclude attackers with any physical access
to the device, the attacker could obtain an instance of
the USB Proxy Device if the device available in public.
Because current prototype implementation builds the
USB Proxy Device as a small computer instance, the
attacker who can obtain the device can disassemble to
leak the private key signed by the RASP and use the
key to build a fake instance of the USB Proxy Device.
However, we believe that this is just an implementation
issue; this can be protected by implementing the UPD
with the other TEE or entirely in hardware. We
further discuss on other trusted ways of building the
USB Proxy Device in §7.
Attacks on the secure channel. Attackers could
attempt to decrypt or inject data on the established secure
channel. Unfortunately, the secure channel is protected
by a symmetric encryption scheme, AES-128-GCM, which
is an authenticated encryption with associated data
(AEAD). The correct use of the scheme guarantees that
no attackers can decrypt or alter the encrypted data
without obtaining the encryption key. To achieve this
guarantee, SGX-USB follows the same way in how
Transportation Layer Security (TLS) utilizes the same
scheme as AEAD (e.g., use decrypted data only if tag
matches, encrypt only short block, does not reuse the
same IV, etc.). Moreover, because ECDHE key exchange
scheme securely derives the key, attackers can obtain the
key only if by breaking the scheme or by forging the
key exchange message, all of which are impossible in
SGX-USB construction.

Despite the fact that SGX-USB can guarantee the
authenticity of channel end points and the integrity and
the confidentiality of the data on the channel, SGX-USB
cannot guarantee the availability of the channel. We
further discuss on this limitation in §7.

6.2. Performance

We evaluated SGX-USB for the performance of I/O
channel in terms of throughput and latency. Moreover,
we provide timing information how long does the
establishment of a secure I/O channel through remote

Page 7443

16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K
Packet Size (bytes)

50

100

150

200

250

300

Th
ro

ug
hp

ut
 (M

bp
s)

17Mbps
34Mbps

57Mbps

92Mbps

138Mbps

181Mbps

222Mbps

243Mbps

285Mbps 291Mbps

AES-128-GCM
No encryption

Figure 7: The measured throughput of the secure I/O channel
for various packet size.

attestation takes.
Throughput and Latency. To evaluate the performance
of the secure I/O channel established by SGX-USB, we
measure the throughput and latency of the channel for
various packet sizes. To help understand the result, we
note that the maximum packet size of the USB protocol
is 1 KB and typical packet size for USB HID devices
is 32–512 bytes. Although we use a Gigabit Ethernet
adapter (max bandwidth 1Gbps) for the communication
channel, the adapter is connected to a USB 2.0 port (max
bandwidth 480Mbps) due to the hardware limitation on
the USB Proxy Device so the maximum bandwidth of
the channel is around 310Mbps without any encryption
or encapsulation.

Figure 7 depicts the throughput of the secure I/O
channel for various packet size and Table 1 lists detailed
numbers.

The smaller packet size incurs more overhead on both
encryption process (CPU) and size (bandwidth). Because
SGX-USB applies a separate instance of AES-128-GCM
encryption (i.e., using a different IV) per each packet, the
number of required encryption initialization process is
increased for the smaller packet size. Moreover, because
SGX-USB adds small header data (24 bytes) per each
packet for transmitting data authentication tag (16 bytes)
and indicating payload size (8 bytes), delivering smaller
packet would incur more size overhead. Furthermore,
we deliver USB packets over a TCP connection on the
Ethernet link, so additional 50 bytes size overhead is
applied per each 1426 byte payload (1426 = 1500 (MTU)
- 50 (TCP/Ethernet) - 24 (header)).

Because of these overhead characteristics,
SGX-USB demonstrated 57.1 Mbps of throughput
for 64 bytes packets, which is around 18% of the
maximum throughput. However, for 4K bytes packets,
the bandwidth became saturated, and the overhead is
negligible.

Encapsulating the packet and applying encryption
on the packet also incurs overhead on the channel
latency. Figure 8 depicts the throughput of the secure
I/O channel for various packet size and Table 2 lists

16 32 64 128 256 512 1K 2K 4K 8K
Packet Size (bytes)

0

10

20

30

40

50

60

70

La
te

nc
y

(u
se

c)

AES-128-GCM
No encryption

Figure 8: The measured average latency of the secure I/O
channel for various packet size, in five seconds of transmission.

detailed numbers. Although the latency increases as the
packet size increases, the absolute value of the latency
in maximum USB packet size (i.e., 1 KB) is around 11
microsecond, which is fairly negligible.
Authentication speed. The remote attestation process
of SGX-USB requires:
• Two round trips between the enclave and the RASP for

delivering msg0, msg1, and msg2; and msg3 and msg4,
• Two round trips between the RASP and the IAS, one

for requesting and receiving SigRL and the other for
and the signed quote,

• One round trip between the enclave and the UPD
for exchanging ECHDE parameter (using the signed
quote).

To model a realistic use case, we setup the connection
between the enclave and the UPD as a local network
connection, place the RASP on the remote network using
the Google Cloud Platform and using the test IAS server
provided by Intel.

The total round trip time for the remote attestation
for SGX-USB (Figure 3) from step 1 to step 7, it took in
average 553 milliseconds, with standard deviation 31ms
for 100 times of remote attestation trials. This overhead
is not that much because the entire process of remote
attestation is one-time cost per each channel; it only
happens when the USB Proxy Device establishes a new
secure communication channel with an enclave.

7. Discussions

In this section, we discuss on how SGX-USB can
support general I/O, on the performance of the channel,
on the feasibility of hardware implementation of the
UPD, on authenticating the identity of an enclave, and
the availability of the channel, which is an unprotected
security property on the channel.
General I/O support with SGX-USB. On forwarding
a USB device to a network device, the prototype
design of SGX-USB borrows the implementation of
the usbip [Márton, 2011] project that generally supports
all kinds of USB devices, so SGX-USB is. Because the

Page 7444

Table 1: The measured throughput of the secure I/O channel for various packet size, in five seconds of transmission. The throughput
measured by the amount of payload data transmitted on the channel without counting any additional data for encapsulation. W/O
encapsulation indicates the channel throughput when we count the entire amount of data transmitted through the channel including
header information. No encryption indicates the channel throughput when we applied payload encapsulation (i.e., adding of the
header) but did not apply encryption.

Packet Size (Bytes) 64 128 512 1024 4096 8192
W/O encapsulation (Mbps) 181.3 295.1 309.6 306.8 294.6 292.2
No encryption (Mbps) 84.1 187.0 270.5 286.1 289.4 289.6
AES-128-GCM (Mbps) 57.1 91.5 181.0 222.3 285.3 289.4
Overhead (%) -32.1% -51.1% -35.5% -22.3% -1.4% -0.07%

Table 2: The measured average latency of the secure I/O channel for various packet size, in five seconds of transmission. No
encryption indicates the latency incurred when we applied payload encapsulation (i.e., adding of the header) but did not apply
encryption.

Packet Size (Bytes) 64 128 256 512 1024 4096 8192
No encryption (usec) 1.74 1.93 2.39 4.64 9.10 35.99 71.53
AES-128-GCM (usec) 2.85 3.51 4.71 7.19 11.71 36.51 71.94
Overhead (usec) +1.11 +1.57 +2.32 +2.55 +2.61 +0.52 +0.41

USB protocol transmits its data as packets, delivering
each USB packet as a packet over the IP can be done by
only incurring transformation overhead. Moreover, since
we use transmission control protocol (TCP), which is a
reliable protocol, for the data transmission, so there will
be no missing packet on the other end. Therefore, as long
as the driver software can run in the enclave, SGX-USB
can support any USB device by forwarding its packet to
the enclave.

In addition to USB devices, we believe that
SGX-USB can forward devices that support RDMA
(remote direct memory access) protocol through
established channel by implementing a driver counterpart
in the enclave, because by design, data for RDMA can
be delivered over the network.

Channel Performance. Performance evaluation
result of SGX-USB shows that its latency is in a
performant range, but suffers performance bottleneck
due to the encryption process. However, the bottleneck
can be removed if the processor supports hardware-based
encryption engine. Starting from newer ARM processors,
processor manufacturers other than Intel try to integrate
hardware module that accelerate encryption speed.

Regarding the size overhead of the channel
bandwidth, the higher bandwidth would mostly be used
by USB at bulk transfer, which sends a large amount
of data split in each 1K byte packet. In such a case,
SGX-USB can set a buffer to consolidate multiple USB
packets into a large chunk (e.g., merging 16 packets into
a 16Kbytes packet) only for the bulk transfer then the
overhead will be negligible.

Hardware implementation of the UPD. Although
we implemented our prototype of SGX-USB using

a Raspberry Pi, which is a small board computer,
we believe that implementing the UPD in hardware
or other TEE with smaller TCB is feasible. The
hardware implementation of UPD may include a USB
host controller to receive raw packets from I/O devices,
a communication interface to the enclave device, (in
any form, e.g. Ethernet or USB OTG guest device), a
cryptographic engine that handles the remote attestation
process and AES encryption, and a small storage that
is loaded with trusted public keys and a firmware that
controls the components.

A more flexible design would be utilizing ARM
TrustZone. In this case, by implementing the usbip
driver on a small and secure TEE OS for TrustZone,
we can significantly reduce the size of TCB. Moreover,
in conjunction with using TPM, we can securely store
the code and the private key of UPD with the data sealing
feature; so the attackers with a possession of the UPD
cannot alter the code nor retrieve the private key of the
device.
Availability of the channel. We exclude the availability
from the security property that SGX-USB should
guarantee for the communication channel. This is an
inherent limitation due to the adoption of the threat model
of Intel SGX because Intel SGX excludes the operating
system, which runs as a higher privilege than an enclave,
from the threat model.

Although guaranteeing availability cannot be possible
under current threat model, untrusting the operating
system, the user will directly be notified at least when
the availability issue happens (i.e., the device does not
work at all). The operating status of the channel will
either be fully working or not and cannot be half-working
status because missing any of USB packet will break the

Page 7445

encryption status of the secure channel.
Trusting the USB Proxy Device. An attacker
could deploy a rogue USB proxy device with the
intent to maliciously control key negotiation, data
encryption/decryption, and data integrity verification.
Although this paper does not directly address such
threats–—our primary focus is on demonstrating the
solution’s feasibility—–these rogue devices can be
combated using a digital signature for the device. This
signature could be endorsed by a recognized vendor, such
as Intel, or another open-source consortium to ensure it is
not proprietary. In today’s context, trust in device drivers
is fortified by verifying their code-signature. Similarly,
a TEE vendor might issue a certificate that endorses the
proxy device’s public key, all within the framework of
the public-key infrastructure (PKI). We leave such efforts
as future work.

8. Conclusion

We have constructed a trusted I/O channel leveraging
the trusted execution environment to ensure vital security
properties. By facilitating a trusted user I/O pathway,
Intel SGX can now support user-centric applications
like authentication managers and end-to-end secure
video chats. Looking ahead, an immediate next step
involves the real-world hardware implementation of the
SGX-USB device, further cementing a trusted I/O path
to Intel SGX.

References
[Anati et al., 2013] Anati, I., Gueron, S., Johnson, S., and

Scarlata, V. (2013). Innovative technology for cpu
based attestation and sealing. In Proceedings of the 2nd
international workshop on hardware and architectural
support for security and privacy, volume 13.

[Arnautov et al., 2016] Arnautov, S., Trach, B., Gregor, F.,
Knauth, T., Martin, A., Priebe, C., Lind, J., Muthukumaran,
D., O’Keeffe, D., Stillwell, M. L., et al. (2016). Scone:
Secure linux containers with intel sgx. In Proceedings of
the 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), Savannah, GA.

[Baumann et al., 2014] Baumann, A., Peinado, M., and Hunt,
G. (2014). Shielding applications from an untrusted cloud
with haven. In Proceedings of the 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI),
pages 267–283, Broomfield, Colorado.

[Brickell and Li, 2007] Brickell, E. and Li, J. (2007).
Enhanced privacy ID: A direct anonymous attestation
scheme with enhanced revocation capabilities. In
Proceedings of the 2007 ACM workshop on Privacy in
electronic society, pages 21–30.

[Chen et al., 2016] Chen, Y., Reymondjohnson, S., Sun, Z.,
and Lu, L. (2016). Shreds: Fine-grained execution units
with private memory. In Proceedings of the 37th IEEE
Symposium on Security and Privacy (Oakland), pages 56–71,
San Jose, CA.

[Costan and Devadas, 2016] Costan, V. and Devadas, S.
(2016). Intel sgx explained. Technical report, Cryptology
ePrint Archive, Report 2016/086. http://eprint.iacr.
org.

[Hoekstra et al., 2013] Hoekstra, M., Lal, R., Pappachan, P.,
Phegade, V., and Del Cuvillo, J. (2013). Using innovative

instructions to create trustworthy software solutions. In
Proceedings of the 2nd International Workshop on Hardware
and Architectural Support for Security and Privacy (HASP),
pages 1–8, Tel-Aviv, Israel.

[Hunt et al., 2016] Hunt, T., Zhu, Z., Xu, Y., Peter, S., and
Witchel, E. (2016). Ryoan: A distributed sandbox for
untrusted computation on secret data. In Proceedings of
the 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), Savannah, GA.

[Intel, 2008] Intel (2008). Graphics Drivers
Blue-ray Disc* Playback On Intel Graphics FAQ.
http://www.intel.com/support/graphics/
sb/CS-029871.htm#bestexperience. Accessed:
05/04/2015.

[Intel Corporation, 2013] Intel Corporation (2013). Intel
Software Guard Extensions Programming Reference (rev1).
329298-001US.

[Intel Corporation, 2014] Intel Corporation (2014). Intel
Software Guard Extensions Programming Reference (rev2).
329298-002US.

[Johnson et al., 2016] Johnson, S., Scarlata, V., Rozas, C.,
Brickell, E., and Mckeen, F. (2016). Intel software guard
extensions: Epid provisioning and attestation services.
White Paper.

[Kim et al., 2015] Kim, S., Shin, Y., Ha, J., Kim, T., and Han,
D. (2015). A First Step Towards Leveraging Commodity
Trusted Execution Environments for Network Applications.
In Proceedings of the 14th ACM Workshop on Hot Topics in
Networks (HotNets), Philadelphia, PA.

[Klein et al., 2009] Klein, G., Elphinstone, K., Heiser, G.,
Andronick, J., Cock, D., Derrin, P., Elkaduwe, D.,
Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch,
H., and Winwood, S. (2009). sel4: Formal verification of
an os kernel. In Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles, SOSP ’09,
pages 207–220.

[Koeberl et al., 2014] Koeberl, P., Schulz, S., Sadeghi, A.-R.,
and Varadharajan, V. (2014). Trustlite: A security
architecture for tiny embedded devices. In Proceedings
of the Ninth European Conference on Computer Systems,
page 10. ACM.

[McCune et al., 2010] McCune, J. M., Li, Y., Qu, N., Zhou,
Z., Datta, A., Gligor, V., and Perrig, A. (2010). TrustVisor:
Efficient TCB Reduction and Attestation. In Proceedings
of the 31th IEEE Symposium on Security and Privacy
(Oakland), pages 143–158, Oakland, CA.

[Márton, 2011] Márton, N. (2011). USBIP protocol
documentation. https://lwn.net/Articles/
449509/.

[Onarlioglu et al., 2013] Onarlioglu, K., Mulliner, C.,
Robertson, W., and Kirda, E. (2013). Privexec: Private
execution as an operating system service. In Proceedings
of the 34th IEEE Symposium on Security and Privacy
(Oakland), pages 206–220, San Francisco, CA.

[Rozas, 2013] Rozas, C. (2013). Intel software guard
extensions. http://www.pdl.cmu.edu/SDI/2013/
slides/rozas-SGX.pdf.

[Schuster et al., 2015] Schuster, F., Costa, M., Fournet, C.,
Gkantsidis, C., Peinado, M., Mainar-Ruiz, G., and
Russinovich, M. (2015). VC3: Trustworthy Data Analytics
in the Cloud using SGX. In Proceedings of the 36th IEEE
Symposium on Security and Privacy (Oakland), San Jose,
CA.

[Seshadri et al., 2007] Seshadri, A., Luk, M., Qu, N., and
Perrig, A. (2007). Secvisor: A tiny hypervisor to provide
lifetime kernel code integrity for commodity oses. ACM
SIGOPS Operating Systems Review, 41(6):335–350.

[Shih et al., 2016] Shih, M.-W., Kumar, M., Kim, T., and
Gavrilovska, A. (2016). S-nfv: Securing nfv states by
using sgx. In Proceedings of the 2016 ACM International
Workshop on Security in Software Defined Networks &
Network Function Virtualization, pages 45–48. ACM.

Page 7446

http://eprint.iacr.org
http://eprint.iacr.org
http://www.intel.com/support/graphics/sb/CS-029871.htm#bestexperience
http://www.intel.com/support/graphics/sb/CS-029871.htm#bestexperience
https://lwn.net/Articles/449509/
https://lwn.net/Articles/449509/
http://www.pdl.cmu.edu/SDI/2013/slides/rozas-SGX.pdf
http://www.pdl.cmu.edu/SDI/2013/slides/rozas-SGX.pdf

	Introduction
	Background and Related Work
	Overview
	Security Guarantees
	Assumptions and Threat Model

	Design of SGX-USB
	Architecture
	Verifying Authenticity and Sharing Secret through Remote Attestation
	User Verification
	Integrity and Confidentiality: Encrypted Communication Channel

	Implementation
	Evaluations
	Security
	Performance

	Discussions
	Conclusion

